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It is known [I-3] that in order to provide heat shield or to improve the aerody- 
namics of the body strong injection of cooling gas into the supersonic stream is 
utilized. Analysis of flow characteristics in the neighborhood of the solid body 
in the presence of strong single-phase injection and the effect of injection on 
the aerodynamic characteristics of some axisymmetric bodies are given, e.g., in 
[2-4]. Supersonic flow past a blunt-nosed axisymmetric body with blowing of a mix- 
ture of gas and solid particles through a porous segment in the leading edge region 
is considered in the present paper. Such a situation could occur in modeling the 
breakdown of the heat shield of a flight vehicle during its reentry into the thick 
layers of atmosphere and also in the case of forced introduction of particles in 
the flow of the injected gas in order to break up the leading edge shock and ac- 
cordingly the variation in the drag of the body [5]. A description of the trajec- 
tory of the particles has been obtained as a result of numerical and analytical so- 
lution of the problem and their analysis is used to arrive at conclusions on their 
intersection and, consequently, also on the multiple-valued nature of the flow 
parameters in the neighborhood of the line dividing the external flow and the in- 
jected two-phase mixture. Sufficient conditions for multiple-valuedness have been 
analytically found which agree with numerical results. It has been established 
that with a change in composition of sufficiently small particles within the limits 
0.I to 0.6 by weight of the injected mixture the drag coefficient of the body does 
not change by more than 10%. 

I. Formulation of the Problem. It is known [4] that with strong injection, when Rey- 
nolds numbers based on the parameters of the injected gas and free-stream fluid are much 
greater than one, the flow region between the shock wave and the body is represented in the 
form of two inviscid flow regions (shock layer and the layer of injected gases) separated by 
the mixing layer. In computing the aerodynamic characteristics of the flight vehicle the 
thin mixing layer, in which molecular momentum transfer is significant, is usually replaced 
by a contact surface discontinuity. Therefore the problem of supersonic flow past.a body of 
revolution by a pure gas in the presence of localized two-phase injection reduces to the so- 
lution of the system of equations describing gasdynamics of two-phase monodispersion flow 
[6-9]: 
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Tomsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. I, pp. 
82-89, January-February, 1984. Original article submitted December 22, 1982. 

74 0021-8944/84/2501-0074508.50 �9 1984 Plenum Publishing Corporation 



is the pressure; ~ = e + (u 2 + v2)/2 is the sum of internal and kinetic energies of the gas; 
u is the adiabatic index for the gas (frozen); T s is the temperature of particles; x and r 
are the cylindrical coordinates; t is the time; indices x, r, and s correspond to projections 
of vector quantities on x and r axes and to parameters of "fluid" particles. 

Expressions for drag f and heat flux q in the case of spherical particles have the form 

[10] 
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o 2 where ~v = Psds/18~ is the dynamic relaxation time for particles: P is the gas viscosity; d s 
0 is the particle diameter; Ps is the density of particles; T T = (3/2)Pr(cs/Cp)T v is the ther- 

mal relaxation time for particles; Cs/C p is the ratio of specific heats of the particles and gas; 
TT = R/Umax,~ is the characteristic hydrodynamic time. Drag coefficient CD0 = 24/Re and 
Nusselt number Nu0 = 2 correspond to Stokes flow condition for particles, i.e., at Reynolds 
numbers Re = plV -- Vs!ds/~s << I. In order to determine the coefficients c D and Nu which in 
general are functions of Mach number M = IV --Vs]/a0 (n0 = yp/p), Reynolds number Re, and 
Prandtl number Pr = Cp~/% (% is the thermal conductivity of the gas). The relations obtained 
on the basis of approximating experimental data, e.g., in [8-14], are used. 

In the present paper the coefficients c D and Nu were computed using following formulas 
for the case of two-phase injection in accordance with [13, 14] 

c D = CDO [ t  - 1 - 0 . 0 0 0 2 6 R e  1'3s + 0 A 9 7 R e ~  N u  = NUo + 0 .459Pr~176  ( 1 . 3 )  

In view of the small transit time of particles in the shock wave region when compared 
to relaxation times T v and T T and the small volumetric composition of particles in the flow 
it is possible to neglect the effect of the dispersion phase onthe gaseous phase behind the 
shock [8]. Hence parameters of the gaseous phase behind detached shock are found from Ran- 
kine--Hugoniot relations for perfect gas. It is required to satisfy pressure and normal ve- 
locity continuity at the surface of contact discontinuity. "Frozen" boundary conditions are 
specified at the porous surface of the body through which two-phase injection is effected 
[13]: 
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Here s b is the length of the porous leading edge surface along the generatrix; v w is magni- 
tude of the injected gas velocity; ~ is the angle between the normal to the injection sur- 
face and velocity vector Vw; Yw is the adiabatic index for the injected gas; H = (]/2)hw0/h~ 0 
(hw0 , h~0 are, respectively, the stagnation enthalpy of the injected gas and the free-stream); 
z s is the composition of particles in the mixture by weight [z s = ps/(p + Ps)]- The usual 
no-slip condition is specified along the nonporous region near the leading edge. Since the 
characteristics of the system of equations (1.1) for the "fluid" particles represent trajec- 
tories of particles [12, 13], boundary conditions are specified only at the injection sur- 
face. 

/ 
Flow parameters in the system of Eqs. (1.1) and boundary conditions are nondimensional 

quantities: The phase velocities are referred to the maximum free stream velocitY2Umax ~ , 
phase density to the free-stream density p~, pressure to the dynamic pressure p~Umax, , phase 

2 
temperatures to the temperature Tch = Umax,~/Cp~, and linear dimensions to leading edge 
radius or the radius of the mid-section R. 

2. Numerical and Analytical Investigation of the Problem in the Absence of Particle 
Effect on the Parameters of Gaseous Phase. Numerical results show that in the case of two- 
phase spherically symmetric flow [15] when the particle composition by weight z s ~ 0.2, gas 
parameters vary by less than 10%. In their turn, studies carried out in [8] indicated that 
the use of different expressions for interaction coefficients leads to the conclusion that 
the variation in two-phase flow parameters is within 10%. Hence when z s ~ 0.2 there is prac- 
tically no sense in considering the influence of particles on the parameters of gas phase. 
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Thus, when particle composition by weight in the injected flow is small it is possible 
to solve the initial problem in two stages. The first stage is the solution of gasdynamic 
equations (1.1) excluding terms representing interphase exchange with corresponding boundary 
conditions. The determination of gas flow parameters in the supersonic flow past blunt-nosed 
body with injection was carried out using S. K. Godunov's method with explicit separation of 
bow shock and the surface of discontinuity [3]. In the second stage the stationary system 
of equations for the "fluid" particles is solved in the known steady flow field of the gaseous 
phase taking into account terms involving the interphase momentum and energy transfer (1.2) 
and is written in the characteristic form along streamlines: 

dx  us dr  Vs • 
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w h e r e  z i s  t h e  a r c  l e n g t h  o f  t h e  s t r e a m l i n e .  The s y s t e m  o f  e q u a t i o n s  ( 2 . 1 )  w i t h  i n i t i a l  c o n -  
d i t i o n s  ( 1 . 4 )  was s o l v e d  u s i n g  f o u r t h - o r d e r  R u n g e - 4 ( u t t a  m e t h o d  w i t h  a u t o m a t i c  s e l e c t i o n  o f  
i n t e g r a t i o n  s t e p  f o r  a g i v e n  a c c u r a c y .  The f o l l o w i n g  a r e  t h e  c o m p u t e d  r e s u l t s  f o r  t h e  s u p e r -  
s o n i c  f l o w  (~o = 4 . 0 ,  u = 1 .4 )  p a s t  a c o n e  w i t h  a s p h e r i c a l  n o s e  and a c o n e  w i t h  a n o s e  d e -  
s c r i b e d  by  t h e  g e n e r a t r i x  x l ~  + r 1~ = 1 i n  t h e  p r e s e n c e  o f  t w o - p h a s e  i n j e c t i o n  a l o n g  t h e  n o r -  
mal  t o  t h e  p o r o u s  s u r f a c e  w i t h  p a r a m e t e r s :  

(pv,,),, = 0.5, H = 0.5, ?~ = ?~,  p~ = 3000, %/r  P r = 0 , 7 ,  ( l . 2 )  

w h e r e  S b = 0 . 7 5  f o r  t h e  c o n e  w i t h  s p h e r i c a l  n o s e  and S b = 0 . 7 2  f o r  t h e  t r u n c a t e d  c o n e .  

F i g u r e  1 shows t h e  f l o w  p a t t e r n  n e a r  t h e  s p h e r i c a l  n o s e  w i t h  t w o - p h a s e  i n j e c t i o n  o f  
s p h e r i c a l  p a r t i c l e s  o f  d i a m e t e r  d s = 10 -3 , w h e r e  c o n t i n u o u s  l i n e s  r e p r e s e n t  t h e  f o r m  o f  t h e  
bow s h o c k ,  s u r f a c e  o f  c o n t a c t  d i s c o n t i n u i t y  i n  t h e  g a s ,  and a l s o  t h e  p a r t i c l e  s t r e a m l i n e s .  
Dashed line represents the sonic line constructed on the basis of gas parameters. The par- 
ticle streamlines indicate that when the particle size is sufficiently large they pass through 
the injection layer and the shock wave and exit beyond the limits of integration of the ini- 
tial system of equations. In this case the inertial force of particles is greater than vis- 
cous interaction between phases. It is worth noting that this mathematical model does not 
consider the effect of particles on the form of the shock wave (see [5]). 

A different picture is observed with a reduction in the particle size. In this case 
(see Fig. 2a) when d s = 7.5"10 -4 particles are slowed down in the shock layer, turn around 
and are carried downstream. Particles coming out in the neighborhood of the axis of symmetry 
also get into the injection layer where they are again stopped in the flow of the injected 
gas and are carried into the shock layer. 

Figure 2b for this case shows variation in the magnitude of the difference in phase 
velocity vectors (curve 1) and also components u and u s (curves 2 and 3, respectively) along 
the particle streamline with coordinates x = --1.0 and r = 0.045 where it leaves the surface 
of the body. The behavior of curves in Fig. 2b indicates appreciable velocity nonequilibrium 
of the two-phase flow along the streamline. The local minimum in curve 2 characterizing the 
change in velocity component u along the streamline shows that in this region streamlines of 
particles enter the injection layer where the velocity component u has a negative value. 

Thus, it follows from an analysis of Fig. 2a, b that when d s = 7.5"10 -4 streamlines of 
particles can intersect. The presence of nonuniqueness in velocities expressed in Eulerian 
variables requires refinement of the formulated problem. It is seen from an analysis of 
curves in Fig. 2a that the region of multiple values, i.e., the region where particle stream- 
lines intersect, coincides with the order of magnitude of the dimensions of the disturbed flow 
region. As shown by computations, further reduction in particle diameter leads to a reduc- 
tion in this region and at sufficiently small value it disappears. This is confirmed by the 
flow pattern (Fig. 3a and b) obtained with ds = 3"10 -5 and the other parameters remaining as 
before. In this case an almost-equilibrium flow is observed, as seen from the behavior of 
curves in Fig. 3b, because of the increase in interactions between the phases. Here the 
curve 1 illustrates the behavior of the quantity IV -- Vsl along the streamline with the 
same exit coordinates and the curves 2 and 3 represent the change in velocity components 
u and Us, respectively. Further reduction in particle size leads to an equilibrium flow 
when the particle and gas streamlines practically coincide. 
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Figure 4 shows the supersonic flow past a cone with a semivertex angle of 10 ~ , the 
blunt nose being described by the generatrix x l~ + r l~ = I, in the presence of an injection 
of a mixture of gas and particles with d s = 2.5-10 -4 . It is seen that even in the case of 
supersonic flow past a truncated cone the quantitative flow pattern remains unaltered. 

Analysis of this flow pattern for certain parameters indicates the presence of a 
dividing line between the flow region free of particles and the region of the shock layer 
in which particles are present. This line is the envelope of the family of particle stream- 
lines penetrating through the injection layer into the shock layer. Consider the behavior 
of particles near this line in the coordinate system xOy associated with it. In this coor- 
dinate system equations of continuity and momentum for the "fluid" particles take the form 

a a (psv~rtll) = O, H 1 t + • 

1 ' au  s ~u s x u s v  s 
t i  I us-d~-  + vs ~ + - 1--~-- 1 == - -  13(us--  u), ( 2 . 3 )  

1 avs 3v~ ~u~ 
n~ u, ~ -I- v, ov ztj l~ (v~ - v), 

where • is the curvature of the dividing line on which v s = 0; B = CD~h/(CDoTv). 

At small values of (--y), i.e., near the dividing line, the required function can be 
written in the form of a generalized power series 

i ( x ,  ,j) =/o(X) + / , ( . ~ ) ( _ v ) h  + ... 

Then, since v s = 0 at y = 0, the series for v s will have the form 

v~(z, y) ..... v ~ ( x ) ( - v ) "  + ... 

Substituting the major terms from the series in the third equation of the system (2.3) we 
get 

us ~ (__ y)n a~'~lax nv;l~ ( -  g)2,~-1 ' • = - -  vsl ( - -  Y)'~ + Vo~. ( 2 . 4 )  

Two cases are possible here depending on the value of the expression • 0+~v 0 . 

Consider the case • ~v0<0 . This inequality arises when the centrifugal force of 
particles is less than the resistance of the gas. Then from an analysis of Eq. (2.4) we get 

o ~" f~Vo) > O. 1 172 ~ (~r o -F 

It is seen from this that when ~u~.o+~vo<O, which occurs at least in the neighborhood of 
the axis of symmetry, the velocity component v s of the particles at each point of the flow 
near the dividing line can have two values, equal in magnitude but opposite in direction. 
This physically means that in the given flow region there are particles not only moving in 
the direction of the shock wave but also in the opposite direction which is confirmed by the 
results of the above computations. 
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Thus, in the region where the particle streamlines intersect there are at least three 
speeds, and one can refer to a third phase, viz., phase of particles "reflected" from the 
dividing line. In this case the basic system of equations (1.1) should be supplemented by 
equations for the particles of the third phase, and the equations for the gas by terms rep- 
resenting momentum and energy transfer with these particles. 

Similar analysis of the equation of continuity for "fluid" particles gives the follow- 
ing expression for Ps as (--y) + 0 

I 
P8 (x, y) = p ~ o  (x) + P81 (z) ~ + "'' 

It follows that the particle density Ps tends to infinity when approaching the dividing line. 
Such a behavior of the quantity Ps is, apparently, the result of the initial assumption that 
particles do not interact with each other. This assumption is apparently not valid near the 
dividing line. The introduction of the third phase, viz., the particles "reflected" from 
the dividing line, requires the specification of boundary conditions for the system of equa- 
tions describing the flow of this phase. Analysis of conservation laws at the dividing line 
gives 

~ y - - ~  - - 0  p,v~ = --p~3v,3, v~/v~ = - - i ,  v,  = O, 

Ts3 = "T8 ' U83 ~ Us, 

where index 3 indicates third phase. Thus, when • + ~vo~O the dividing line y = 0 is a 
weak discontinuity for the lifting phase and contact discontinuity for "fluid" particles. 

If ~u~+ ~vn=0, then in this case there is no ambiguity in the value of v s . The par- 
ticles reach the dividing line and then move along it. Unlike the previous case the deriva- 
tives with respect to y on either side of y = 0 are finite for all flow parameters. 

3. Effect of Condensation Phase on the Aerodynamics of the Body. As shown by computa- 
tions without the consideration of the reverse effect of particles on the parameters of the 

78 



-33 

1)6 

__[0,8 

-~,2 -0~4 0 

F i g .  4 

F ~ 
r 

O) 6 -- 

[0) 2 

/ O~f2 
/ 

/ 
/ 

/ 
/ 

/ 
- -  0~04 

o,2 0,4 x 

Fig. 5 

~/~ 

2 f-, 
f 

.J- 

076 

0 ~ 2  4 

....... i~;-I %; 

~ 0,20 

0)12 ' 

0104 

O, 2 074 oc 

Fig. 6 

lifting phase, when particle size is sufficiently small the interaction of particle stream- 
lines practically disappears. In this case it is possible to use the system of equations 
(1.1)-(1.4) to describe mathematically two-phase injection in supersonic external flow. This 
problem was solved using S. K. Godunov's relaxation technique with the discontinuity sur- 

face in the gas phase. The procedure described in the method with donor cells [17] and the 
method of "flows" [18] was used to determine "large" values at the boundaries of neighboring 
cells for "gas" particles. 

The computational results given below were obtained with following parameters: M~ = 4.0, 

Y~ = Tw = 1.4, [(p + 0s)Vn] w = 0.5, s b = 0.72, H = 0.5, Pr = 0.7, Cp/C s = 0.8, p~ = 3000, 
d s 3-10 -5 . Particle composition by weight z s in the injected gas was varied from 0 to 0.7. 

Figure 5 shows the variation of pressure p (curve I), gas and particle densities (curves 
2 and 3, respectively), and also the difference in the moduli of velocity components u and u s 
(dashed line) along the axis of symmetry from the surface of the body to the shock wave with 
z s = 0.1. The pressure in the injected layer (x ~ 0.337) is practically constant just as in 
the case of the absence of particles and falls linearly in the shock layer to its value on 
the shock wave. The density of particles p s increases a little towards the surface dividing 
the external flow and the injected gas and then decreases sharply to zero. The curve for 
the difference in the width of gas and particle velocities lul -- [Usl shows that for suffi- 
ciently small particles the deceleration of the gas near the axis of symmetry is negligible 
and when x > 0.337, i.e., in the shock layer, this curve represents a change in the u-com- 
ponent of the gas. 

With increase in the fraction of particles z s by weight in the injected flow the geo- 
metric pattern of the flow does not quantitatively alter except for the sonic line. An in- 
crease in the parameter z s makes it elongated downstream, i.e., in this case the gas velocity 
attains sonic velocity later due to the decelerating effect of the dispersion phase. An in- 
crease in particle weight composition also leads to a reduction in the density of the gas 
phase and an increase in the density of the mixture as a whole in the injected layer, which 
results in the reduction of injection speed and a consequent reduction in specific mass flow 
rate of the gas (0Vn) w for a constant two-phase injection. Therefore an increase in the 
parameter z s leads to a reduction in the deviation of the contact surface in the gas by 28% 
and the shock wave by 11% with z s = 0.6 when compared to the case z s = 0.1. 

In Fig. 6 for z s = 0.6 curve I represents pressure distribution across the shock layer; 
2 gives density distribution for the gas p along the axis of symmetry as a function of x 
representing the distance from the stagnation point to the shock wave; curve 3 and the dashed 
line are, respectively, the density distribution of the dispersion phase Ps and the differ- 
ence in moduli of constituent velocities lul -- [Usl along the axis of symmetry; 4 is the 
particle density distribution along the last line of the computational scheme for the lateral 
surface of the cone to the shock wave. The behavior of this curve indicates that there is a 
layer of pure gas at the lateral surface of the cone and particles downstream are concen- 
trated in a fairly narrow region when compared to the total thickness of the injected layer 

79 



and the shock layer. It is seen from the behavior of curves 2 and 3 that in this case the 
density of the condensed phase became larger than the density of the gas phase and the den- 
sity of the two-phase mixture more than doubled when compared to the case z s = 0.1. 

It is worth noting that the pressure distributions along the lateral surface of the 
body quantitatively differ very little in both cases. A certain increase in pressure is 
noticeable in the neighborhood of the point where injection ends with increase in which leads 
to an increase in wave-drag coefficient by 7.7% at z s = 0.6 compared to the case z s = 0.1 and 
in the total drag by 6% taking into account the thrust due to the injected flow. It is pos- 
sible to conclude on the basis of computations that the fraction by weight of small-sized 
particles in the injected flow has insignificant effect on the drag of the body with change 
in z s within the limits 0.1 ~ z s ~ 0.6. 
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